高纹波抑制率 低压差型CMOS电压稳压器

S-T111系列

S-T111 系列是使用 CMOS 技术开发的低压差,高精度输出 电压,低消耗电流正电压型电压稳压器。

由于内置有低通态电阻晶体管,因而压差低,能够获得较大的输出电流。为了使负载电流不超过输出晶体管的电流容量,内置了过载电流保护电路。此外,还内置电源开/关控制电路,以延长电池的使用寿命。和以往 CMOS 工艺电压稳压器相比,所能使用的电容器种类得以增多,也能使用小型的陶瓷电容器。因采用 SOT-23-5 小型封装,故可高密度安装。

■ 特点

• 可详细地选择输出电压。 可以在1.5~5.5 V的范围内选择,并以0.1 V为单位级进

輸出电压精度高。 ±1.0 % 精度

● 输入输出压差低。 190 mV 典型值(输出为3.0 V的产品, I_{OUT}=100 mA时)

• 消耗电流少。 工作时: 50 µA 典型值、90 µA 最大值

休眠时: 0.1 µA 典型值、1.0 µA 最大值

• 输出电流大。 可输出150 mA (V_{IN}≥V_{OUT(S)} +1.0 V时)*1

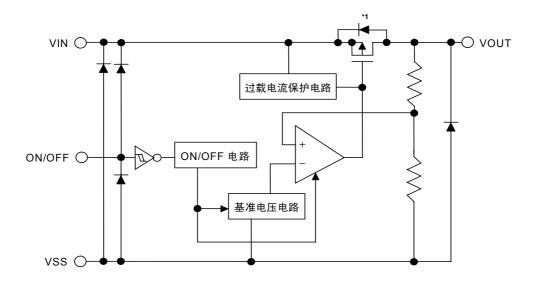
• 内置电源开/关控制电路。 能够延长电池的使用寿命

• 能够使用低ESR电容器。 输出电容器,能够使用0.1 µF以上的陶瓷电容器

高纹波抑制率。内置过载电流保护电路。80 dB 典型值(1.0 kHz时)限制输出晶体管的过载电流

● 采用小型封装。 SOT-23-5

*1. 请注意在输出大电流时的封装容许功耗。


■ 用途

- 使用电池供电的设备的稳压电源
- 通信设备的稳压电源
- 家电产品的稳压电源
- 携带电话用的稳压电源

■ 封装

封装名	图面号码				
	封装外形图	卷带图		卷带盘图	
SOT-23-5	MP005-A	MP005-A	I I	MP005-A	

■ 框图

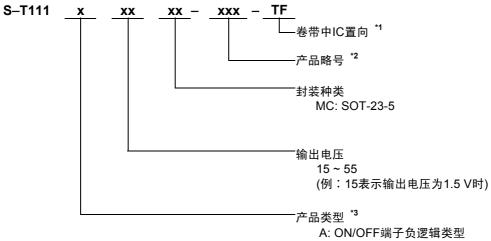

*1. 寄生二极管

图1

■ 产品型号名的构成

● S-T111系列,可根据用途选择指定产品的类型、输出电压值。产品名上的文字列表示如下"产品名"所示内容。详细的产品名,请参照"产品名目录"。

1. 产品名

- B: ON/OFF端子正逻辑类型

- *1. 请参照带卷图。
- *2. 请参照产品名目录。
- *3. 请参照工作说明"3. 开/关控制端子(ON/OFF端子)"。

2. 产品名目录

表1

表1				
输出电压	产品名			
1.5V±1.0%	S-T111B15MC-OGA-TF			
1.6V±1.0%	S-T111B16MC-OGB-TF			
1.7V±1.0%	S-T111B17MC-OGC-TF			
1.8V±1.0%	S-T111B18MC-OGD-TF			
1.9V±1.0%	S-T111B19MC-OGE-TF			
2.0V±1.0%	S-T111B20MC-OGF-TF			
2.1V±1.0%	S-T111B21MC-OGG-TF			
2.2V±1.0%	S-T111B22MC-OGH-TF			
2.3V±1.0%	S-T111B23MC-OGI-TF			
2.4V±1.0%	S-T111B24MC-OGJ-TF			
2.5V±1.0%	S-T111B25MC-OGK-TF			
2.6V±1.0%	S-T111B26MC-OGL-TF			
2.7V±1.0%	S-T111B27MC-OGM-TF			
2.8V±1.0%	S-T111B28MC-OGN-TF			
2.9V±1.0%	S-T111B29MC-OGO-TF			
3.0V±1.0%	S-T111B30MC-OGP-TF			
3.1V±1.0%	S-T111B31MC-OGQ-TF			
3.2V±1.0%	S-T111B32MC-OGR-TF			
3.3V±1.0%	S-T111B33MC-OGS-TF			
3.4V±1.0%	S-T111B34MC-OGT-TF			
3.5V±1.0%	S-T111B35MC-OGU-TF			
3.6V±1.0%	S-T111B36MC-OGV-TF			
3.7V±1.0%	S-T111B37MC-OGW-TF			
3.8V±1.0%	S-T111B38MC-OGX-TF			
3.9V±1.0%	S-T111B39MC-OGY-TF			
4.0V±1.0%	S-T111B40MC-OGZ-TF			
4.1V±1.0%	S-T111B41MC-OHA-TF			
4.2V±1.0%	S-T111B42MC-OHB-TF			
4.3V±1.0%	S-T111B43MC-OHC-TF			
4.4V±1.0%	S-T111B44MC-OHD-TF			
4.5V±1.0%	S-T111B45MC-OHE-TF			
4.6V±1.0%	S-T111B46MC-OHF-TF			
4.7V±1.0%	S-T111B47MC-OHG-TF			
4.8V±1.0%	S-T111B48MC-OHH-TF			
4.9V±1.0%	S-T111B49MC-OHI-TF			
5.0V±1.0%	S-T111B50MC-OHJ-TF			
5.1V±1.0%	S-T111B51MC-OHK-TF			
5.2V±1.0%	S-T111B52MC-OHL-TF			
5.3V±1.0%	S-T111B53MC-OHM-TF			
5.4V±1.0%	S-T111B54MC-OHN-TF			
5.5V±1.0%	S-T111B55MC-OHO-TF			
+ *	N/ 1			

备注 在希望使用A种类产品时,请与本公司营业部咨询。

■ 引脚排列图

 表2

端子编号	端子记号	端子内容
1	ON/OFF	开/关控制端子
2	VSS	接地(GND)端子
3	NC ^{*1}	无连接
4	VOUT	电压输出端子
5	VIN	电压输入端子

*1. NC表示从电气的角度而言处于开放状态。 所以,与VIN以及VSS连接均可。

图2

■ 绝对最大额定值

表3

(除特殊注明以外: Ta=25°C)

项目	记号	绝对最大额定值	单位
输入电压	V_{IN}	$V_{SS}{=}0.3\sim V_{SS}{+}7$	V
	V _{ON/OFF}	$V_{SS}0.3 \sim V_{IN}\text{+-}0.3$	
输出电压	V_{OUT}	$V_{SS}0.3 \sim V_{IN}\text{+-}0.3$	
容许功耗	P_{D}	300	mW
工作周围温度	Topr	−40 ~ +85	°C
保存周围温度	Tstg	−40 ~ +125	

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性损伤。

■ 电气特性

表4

(除特殊注明以外: Ta=25°C)

(陈行殊注明以外:								
项目	记号	条件		最小值	典型值	最大值	单位	测定 电路
输出电压*1	$V_{OUT(E)}$	V _{IN} =V _{OUT(S)} +1.0 V, I _{OUT} =30 mA		V _{OUT(S)} ×0.99	$V_{\text{OUT(S)}}$	V _{OUT(S)} ×1.01	٧	1
输出电流 ^{*2}	I _{out}	V _{IN} ≥V _{OUT(S)} +1.0 V		150 ^{*5}	_	_	mA	3
输入输出压差 ^{*3}	V_{drop}	I _{OUT} =50 mA	1.5 V ≤V _{OUT(S)} ≤2.7 V		无规定 无规定		V	1
			2.8 V ≤V _{OUT(S)} ≤5.5 V	_	0.08	0.14		
		I _{OUT} =100 mA	1.5 V ≤V _{OUT(S)} ≤1.6 V	_	0.32	0.55		
			1.7 V ≤V _{OUT(S)} ≤1.8 V	_	0.28	0.47		
			1.9 V ≤V _{OUT(S)} ≤2.3 V		0.25	0.35		
			2.4 V ≤V _{OUT(S)} ≤2.7 V	_	0.20	0.29		
			2.8 V ≤V _{OUT(S)} ≤5.5 V	_	0.19	0.26		
输入稳定度	$\frac{\Delta V_{\text{OUT1}}}{\Delta V_{\text{IN}} \bullet V_{\text{OUT}}}$	$V_{OUT(S)}$ +0.5 V \leq V _{IN} \leq 6.5 V, I _{OUT} =30 mA		_	0.05	0.2	% / V	
负载稳定度	ΔV_{OUT2}	$V_{IN}=V_{OUT(S)}+1.0 \text{ V}, 1.0 \text{ mA} \le I_{OUT} \le 80 \text{ mA}$		_	12	40	mV	
输出电压温度系数 ^{*4}	ΔV _{OUT} ΔTa • V _{OUT}	V _{IN} =V _{OUT(S)} +1.0 V, I _{OUT} =10 mA -40°C ≤Ta ≤85°C		_	±100	_	ppm/ °C	
工作时消耗电流	I _{SS1}	V _{IN} =V _{OUT(S)} +1.0 V, ON/OFF端子为ON, 无负载		_	50	90	μA	2
休眠时消耗电流	I _{SS2}	V _{IN} =V _{OUT(S)} +1.0 V, ON/OFF端子为OFF, 无负载		_	0.1	1.0		
输入电压	V _{IN}	_		2.0	_	6.5	V	_
开/关控制端子 输入电压"H"	V _{SH}	$V_{IN}=V_{OUT(S)}+1.0 \text{ V}, R_L=1.0 \text{ k}\Omega$		1.5	_	_		4
开/关控制端子 输入电压"L"	V _{SL}	$V_{IN} = V_{OUT(S)} + 1.0 \text{ V}, R_L = 1.0 \text{ k}\Omega$		_	_	0.3		
开/关控制端子 输入电流"H"	I _{SH}	V _{IN} =6.5 V, V _{ON/OFF} =6.5 V		-0.1	_	0.1	μA	
开/关控制端子 输入电流"L"	I _{SL}	V _{IN} =6.5 V, V _{ON/OFF} =0 V		-0.1	_	0.1		
纹波抑制率	RR	V_{IN} = $V_{\text{OUT}(S)}$ +1.0 V, f=1.0 kHz, ΔV_{rip} =0.5 Vrms, I_{OUT} =30 mA		_	80	_	dB	5
短路电流	I _{short}	V _{IN} =V _{OUT(S)} +1.0 V, ON/OFF端子为ON, V _{OUT} =0 V		_	200	_	mA	3

*1. V_{OUT(S)}: 设定输出电压值

V_{OUT(E)}: 实际输出电压值

固定I_{OUT}(=30 mA),输入为V_{OUT(S)}+1.0 V时的输出电压值

- *2. 缓慢增加输出电流,当输出电压为小于V_{OUT(E)}的95%时的输出电流值
- *3. $V_{drop} = V_{IN1} (V_{OUT3} \times 0.98)$

 V_{OUT3} : V_{IN} = $V_{OUT(S)}$ +1.0 V, I_{OUT} = 50 mA或者 I_{OUT} = 100 mA时的输出电压值

 V_{IN1} : 缓慢下降输入电压,当输出电压降为 V_{OUT3} 的98%时的输入电压

*4. 输出电压的温度变化[mV/°C]按照如下公式算出。

- *1. 输出电压的温度变化
- *2. 设定输出电压值
- *3. 上述输出电压的温度系数
- *5. 意指能够得到此值为止的输出电流。

由于封装容许功耗的不同,也有不能满足此值的情况发生。请注意在输出大电流时的封装容许功耗。此规格为设计保证。

■ 测定电路

1.

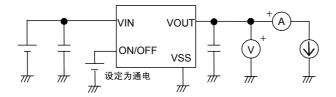


图3

2.

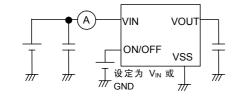


图4

3.

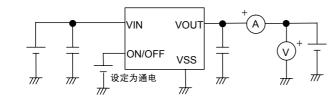


图5

4.

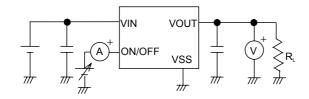


图6

5.

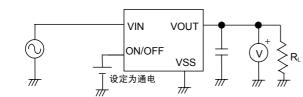
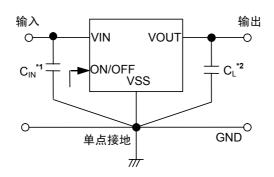



图7

■ 标准电路

- *1. C_{IN}为输入稳定用电容器。
- *2. CL可以使用0.1 µF以上的陶瓷电容器。

图8

注意 上述连接图以及参数并不作为保证电路工作的依据。实际的应用电路请在进行充分的实测基础上设定参数。

■ 使用条件

输入电容器(C_{IN}): 0.1 μ F以上 输出电容器(C_L): 0.1 μ F以上 输出电容器的ESR: 10 Ω 以下

注意 一般而言,线性稳压电源因选择外接零件的不同有可能引起振荡。上述电容器使用前请确认在应用电路上不发生振荡。

■ 输入、输出电容器(C_{IN}、C_L)的选定

S-T111系列,因相位补偿,需要在VOUT-VSS端子间设置输出电容器。在全部的温度范围,输出电容器使用 $0.1~\mu$ F以上的陶瓷电容器就可以稳定工作。另外,在使用OS电容器、钽电容器或铝电解电容器时,容量值则必须为 $0.1~\mu$ F以上,ESR10 Ω 以下。

因输出电容值的不同,作为过渡响应特性的输出过冲值、下冲值将会发生变化。另外,输入电容器也因应用电路的不同所需要的容量值也不同。

应用电路的推荐值为 C_{IN} =1.0 μ F以上, C_L =0.47 μ F以上,在使用时,请对包括温度等特性予以充分的实测验证。

■ 用语的说明

1. 低压差型电压稳压器

采用内置低通态电阻晶体管的低压差的电压稳压器。

2. 低ESR

电容器的ESR(Equivalent Series Resistance:等效串联电阻)小。S-T111系列在输出方电容器(C_L)中能够使用陶瓷电容器等具有ESR的电容器。ESR如在10 Ω以下就可使用。

3. 输出电压(V_{OUT})

在输入电压*1□输出电流□温度一定的条件下,输出电压的输出电压精度可保证为±1.0%。

*1. 因产品的不同而有所差异。

注意 当这些条件发生变化时,输出电压的值也随之发生变化,有可能导致输出电压的精度超出上述范围。详情请参阅电气特性、及各特性数据。

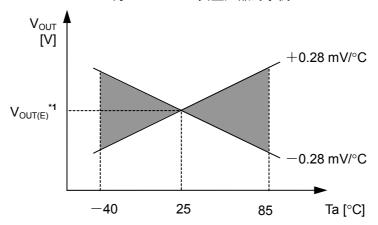
4. 输入稳定度 (ΔV_{OUTI} ΔV_{IN} • V_{OUT})

表示输出电压对输入电压的依存性。即,当输出电流一定时,输出电压随输入电压的变化而产生的变化量。

5. 负载稳定度(ΔV_{OUT2})

表示输出电压对输出电流的依存性。即,当输入电压一定时,输出电压随输出电流的变化而产生的变化量。

6. 输入输出电压差(V_{drop})


表示当缓慢降低输入电压 V_{IN} ,当输出电压降到为 V_{IN} = $V_{OUT(S)}$ +1.0 V时的输出电压值 V_{OUT3} 的98%时的输入电压 V_{IN1} 与输出电压的差。

 $V_{drop} = V_{IN1} - (V_{OUT3} \times 0.98)$

7. 输出电压的温度系数 $\left(\frac{\Delta V_{\text{OUT}}}{\Delta Ta \bullet V_{\text{OUT}}}\right)$

表示输出电压的温度系数在±100 ppm/°C时的特性,在工作温度范围内如图9所示的倾斜范围。

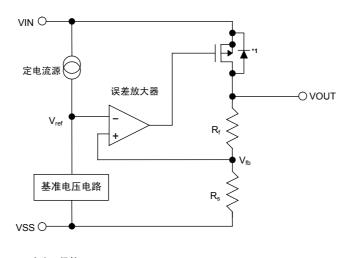
为 S-T111B28 典型产品的示例

*1. V_{OUT(E)}为 25 °C 时的输出电压测定值。

图9

输出电压的温度变化[mV/°C]按下式算出。

$$\frac{\Delta V_{\text{OUT}}}{\Delta T a} \big[\text{mV/}^{\circ} C \big]^{*1} = V_{\text{OUT}(S)} \big[V \big]^{*2} \times \frac{\Delta V_{\text{OUT}}}{\Delta T a \bullet V_{\text{OUT}}} \big[\text{ppm/}^{\circ} C \big]^{*3} \, \div 1000$$


- *1. 输出电压的温度变化
- *2. 设定输出电压值
- *3. 上述输出电压温度系数

■ 工作说明

1. 基本工作

图10所示为S-T111系列的框图。

误差放大器根据反馈电阻 R_s 及 R_f 所构成的分压电阻的输出电压 V_f 。同基准电压(V_{ref})相比较。通过此误差放大器向输出晶体管提供必要的门极电压,而使输出电压不受输入电压或温度变化的影响而保持一定。

*1. 寄生二极管

图10

2. 输出晶体管

S-T111系列的输出晶体管,采用了低通态电阻的Pch MOS FET晶体管。

在晶体管的构造上,因在VIN-VOUT端子间存在有寄生二极管,当 V_{OUT} 的电位高于 V_{IN} 时,有可能因逆流电流而导致IC被毁坏。因此,请注意 V_{OUT} 不要超过 V_{IN} +0.3 V以上。

3. 开/关控制端子(ON/OFF端子)

启动以及停止稳压器的工作。

将 ON/OFF 端子设定到"关"时,内部电路全部停止工作,使 VIN–VOUT 端子间内置 Pch MOS FET 输出晶体管关闭,大幅度抑制消耗电流。VOUT 端子通过数 $M\Omega$ 的 VOUT–VSS 端子间内置分压电阻而变为 V_{SS} 级。

此外,因ON/OFF端子的构造如图11所示构造,在内部为既非上拉也非下拉,所以不要将开关控制端在悬空状态下使用。另外,如附加 $0.3~V \sim V_{IN}-0.3~V$ 的电压时,会增加消耗电流,请予以注意。在不使用ON/OFF端子时,如为"A"型号产品请与VSS端子连接,"B"型号产品请与VIN端子连接。

表5

产品类型	ON/OFF端子	内部电路	VOUT端子电压	消耗电流
Α	"L": 通电	工作	设定值	I _{SS1}
Α	"H": 断电	停止	V _{SS} 电位	I _{SS2}
В	"L": 断电	停止	V _{SS} 电位	I _{SS2}
В	"H": 通电	工作	设定值	I _{SS1}

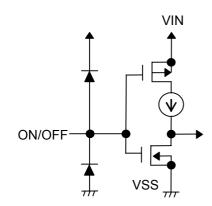
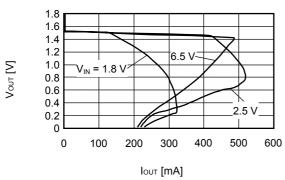


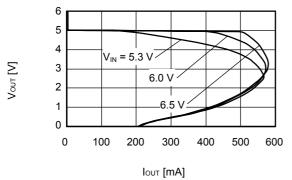
图11

■ 注意事项

- VIN端子、VOUT端子以及GND的配线,为降低阻抗,充分注意接线方式。另外,请尽可能将输出电容器 (C₁)接在VOUT-VSS端子的附近,将输入稳定电容器(C⋈)接在VIN-VSS端子的附近。
- 线性稳压电源通常在低负载电流(1.0 mA以下)状态下使用时,输出电压有时会上升,请加以注意。
- 线性稳压器通常会因所选择的外接部件而产生振荡。本IC特推荐在以下条件下使用,在实际的使用条件下,请对包括温度特性等进行充分的实测验证后再决定。

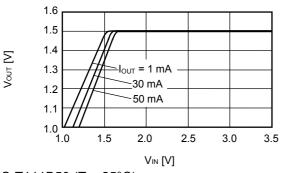

输入电容器(C_{IN}): 1.0 μ F以上 输出电容器(C_L): 0.47 μ F以上 等效串联电阻(ESR): 10 Ω 以下

- 在电源的阻抗偏高的情况下,当IC的输入端未接电容或所接电容值很小时,会发生振荡,请加以注意。
- 请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- 本IC虽内置防静电保护电路,但请不要对IC印加超过保护电路性能的过大静电。
- 有关所需输出电流的设定,请留意"电气特性"表4的输出电流值及栏外的注意事项*5。
- 使用本公司的IC生产产品时,如在其产品中对该IC的使用方法或产品的规格,或因与所进口国对包括本IC 产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

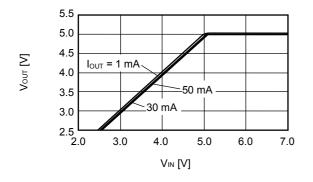

■ 各种特性数据(典型数据)

(1) 输出电压-输出电流(负载电流增加时)

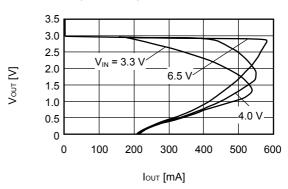
S-T111B15 (Ta=25°C)



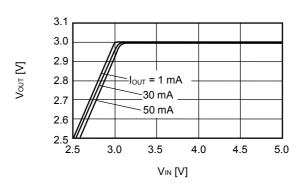
S-T111B50 (Ta=25°C)



(2) 输出电压-输入电压

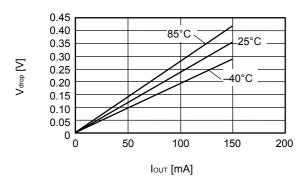

S-T111B15 (Ta=25°C)

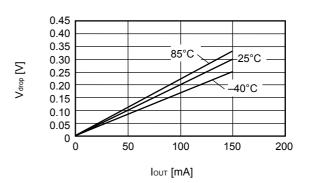
S-T111B50 (Ta=25°C)


S-T111B30 (Ta=25°C)

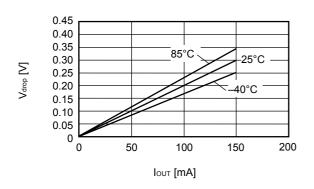
备注 有关所需的输出电流的设定,请注意如下问题。

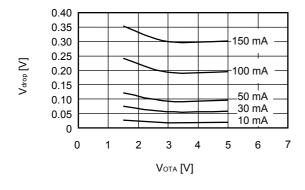
- 1) "电气特性"表的输出电流最小值以及 注意事项*5
- 2) 封装的容许功耗


S-T111B30 (Ta=25°C)

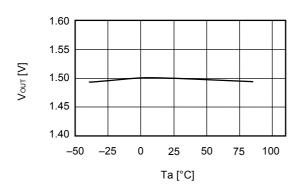

14

(3) 压差-输出电流

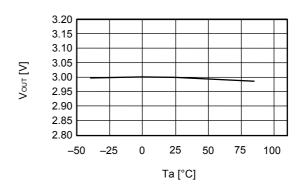

S-T111B15


S-T111B30

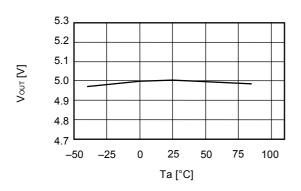
S-T111B50



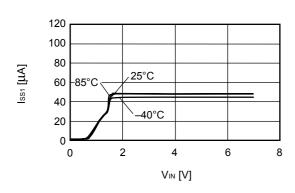
(4) 压差-设定输出电压



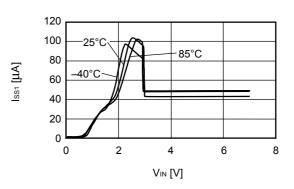
(5) 输出电压-周围温度


S-T111B15

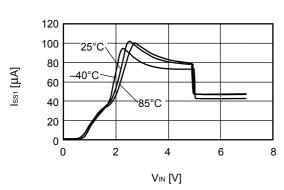
S-T111B30



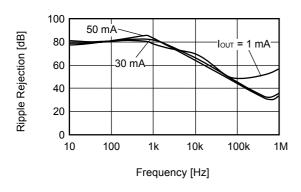
S-T111B50



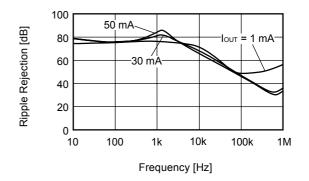
(6) 消耗电流-输入电压


S-T111B15

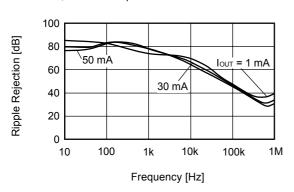
S-T111B30


S-T111B50

(7) 纹波抑制率


S-T111B15 (Ta=25°C)

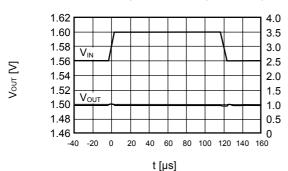
 V_{IN} = 2.5 V, C_{OUT} = 0.47 μF


S-T111B30 (Ta=25°C)

 V_{IN} = 4.0 V, C_{OUT} = 0.47 μF

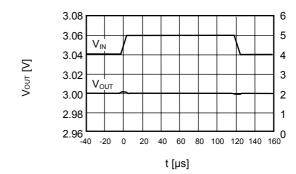
S-T111B50 (Ta=25°C)

 V_{IN} = 6.0 V, C_{OUT} = 0.47 μF

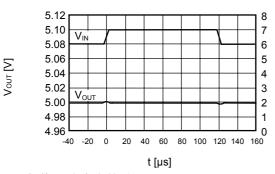

 $\sum_{\mathbb{N}} \mathbb{N}$

■ 参考数据

(1) 输入过渡响应特性


S-T111B15 (Ta=25°C)

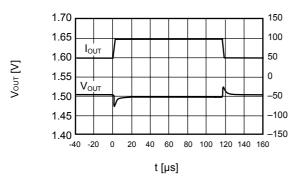
IOUT = 30 mA, tr = tf = 5.0 μs, COUT = 0.47 μF, CIN = 0 μF


S-T111B30 (Ta=25°C)

lout = 30 mA, tr = tf = 5.0 μ s, Cout = 0.47 μ F, Cin = 0 μ F

S-T111B50 (Ta=25°C)

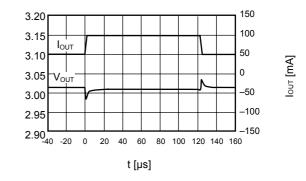
IOUT = 30 mA, tr = tf = 5.0 μ s, COUT = 0.47 μ F, CIN = 0 μ F



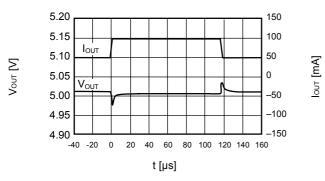
∑ N N

(2) 负载过渡响应特性

S-T111B15 (Ta=25°C)


 V_{IN} = 2.5 V, C_{OUT} = 0.47 μ F, C_{IN} = 1.0 μ F, I_{OUT} = 50 \leftrightarrow 100 mA

S-T111B30 (Ta=25°C)


Vour [V]

 V_{IN} = 4.0 V, C_{OUT} = 0.47 μ F, C_{IN} = 1.0 μ F, I_{OUT} = 50 \leftrightarrow 100 mA

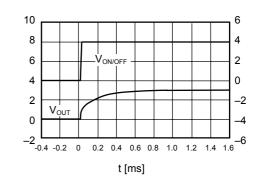
S-T111B50 (Ta=25°C)

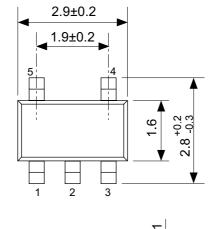
 V_{IN} = 6.0 V, C_{OUT} = 0.47 μF , C_{IN} = 1.0 μF , I_{OUT} = 50 \leftrightarrow 100 mA

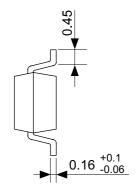
(3) ON/OFF端子过渡响应特性

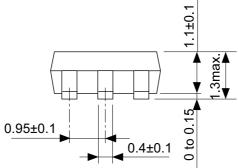
S-T111B15 (Ta=25°C)

 V_{IN} = 2.5 V, C_{OUT} = 0.47 μ F, C_{IN} = 1.0 μ F, I_{OUT} = 100 mA

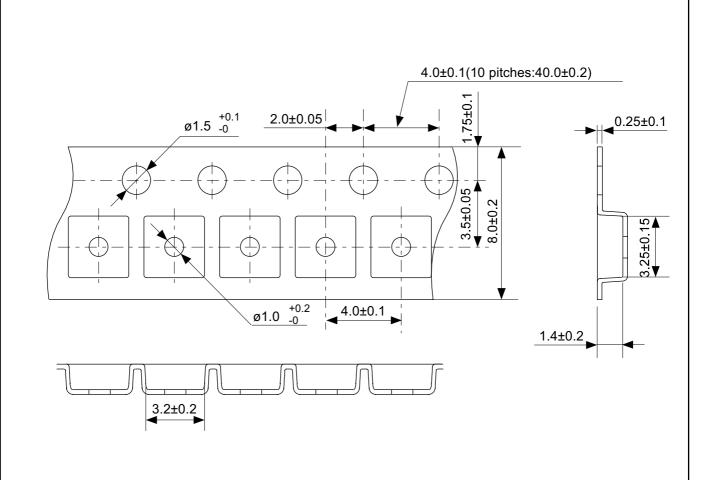

5
4
3
2
1
VON/OFF
1
0
-1
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 -3
t [ms]

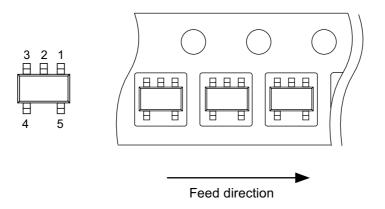

S-T111B30 (Ta=25°C)


Von/off [V]

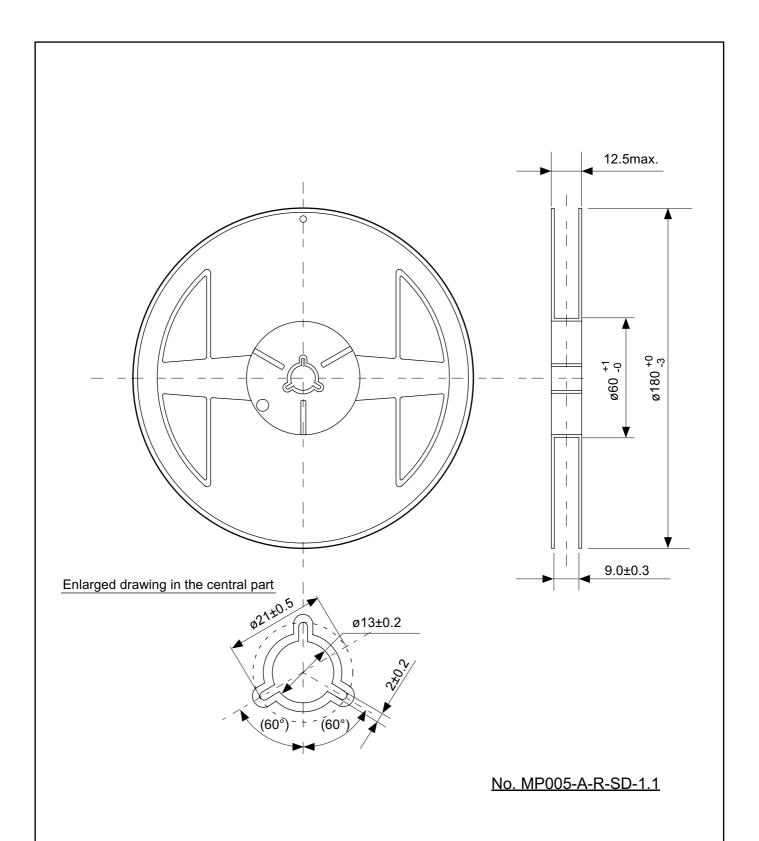

Vour [V]

 V_{IN} = 4.0 V, C_{OUT} = 0.47 μ F, C_{IN} = 1.0 μ F, I_{OUT} = 100 mA





No. MP005-A-P-SD-1.2


TITLE	SOT235-A-PKG Dimensions		
No.	MP005-A-P-SD-1.2		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			

No. MP005-A-C-SD-2.1

TITLE	SOT235-A-Carrier Tape		
No.	MP005-A-C-SD-2.1		
SCALE			
UNIT	mm		
Seiko Instruments Inc.			
Selko mstruments mc.			

TITLE	SOT235-A-Reel				
No.	MP005-A-R-SD-1.1				
SCALE	QTY. 3,000				
UNIT	mm				
Seiko Instruments Inc.					

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料所记载产品,如属国外汇兑及外国贸易法中规定的限制货物(或劳务)时,基于该法律,需得到日本国政府之出口 许可。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。